





- If you were required to bring the fuel from thousands of kilometers to produce power
- If the quality and quantity of fuel was uncertain
- Scarce resource like water, land would have been must to generate power
- You needed proven material to operate at 3000 rpm with less than a tenth of a millimeter clearance
- You would have to build hundreds of meters high stack to avoid pollution in local community
- You needed trained staff to operate such machinery and required regulatory hurdles to cross

# Yet we build Steam power plants

# **Market requirements**

#### Generation scenario in India







# Generation Scenario on a typical day of 2022



Capacity installed upto March 20 indicates thermal capacity target for 2022 is practical to achieve but 175 GW of renewable is likely to get missed.

| Lower Technical<br>Minimum | Primary and Secondary frequency Control |
|----------------------------|-----------------------------------------|
| Faster Ramp up             | Faster Ramp down                        |

Page 3 15.05.2020 Sandeep Chittora Services and Digital

# Increased forced outages









Source: VGB study for flexible operation



# Lower technical minimum is better than two shift operation

# Comparison of life consumption based on cold, warm and hot start

| Start       | Life Consumption    | IEC 45 | VGB R105M |
|-------------|---------------------|--------|-----------|
| Cold Start  | 23 – 75 hours       | 100    | 200       |
| Warm Start  | 15 -17 hours        | 700    | 400       |
| Hot Start   | <u>10 -12 hours</u> | 3000   | 1600      |
| Load Change | 3 hours             | -      |           |

15.05.2020

# **Plant Optimization**

Flexibility is the new efficiency



# Reduced Electricity Production Cost and Increased Competitiveness \*



Reducing technical minimum plant load

Down to 30%

Improved I&C and combustion for stable operation at lower loads

Restricted © Siemens AG 2018



Increasing
Efficiency and
Performance (MW)

16 MW more

@ 75% load, including aging recovery effects by new hardware in HP and LP turbine at constant coal consumption



Improved Ramp Rates

3x higher

Higher ramp rates up to 15MW/min



Reducing CO<sub>2</sub>
Emissions



Reduced Costs for Starting and earlier Power Production

Up to 5% lower

An improved efficiency leads to lower CO<sub>2</sub> emissions! >60min earlier

Reduced startup-times and earlier power productions by improved I&C and hardware measures

# A Balance of Plant (BoP) Optimization makes a significant contribution to economic values

\* Values are based on a 500 MW reference steam power plant

# **Plant Optimization**





# Plant Assessment for Boiler, Condenser, Steam Turbine & Auxiliaries

#### Boiler

Fuel Supply (Mills/Pulverizer)
Instrumentation & Controls
Combustion (Burner) & Operation
Thermal Design (Pressure Part)
Air Preheater/ Fans / Pumps

Boiler Feed Pump (incl. Motor or turbine drive)

Feed Water Heaters



#### **Turbine**

Blading

Operation

Steam Seal

**Drains** 

#### Condenser

Temperature
Termial Difference
(TTD)

Condensate Pump

Steam Piping System

Cooling Water System





## Part Load Challenges:

- Fuel Composition (knowledge of the fuel composition and of the fuel properties incl. ash is very important for the steam generator design)
- Fuel supply system (Mill diagram & operation concept, Pressure drop, Air bypass flap, Control system, Mechanical restrictions of mill etc.)
- Combustion (Fuel composition stability, Temperature/O<sub>2</sub>/Concentration inturbulances, Symmetry of flame, Aerodynamics, Combustion efficiency, Emissivity, Support fuel)

## Combustion quality detoriates at lower loads

- Evaporator Stability (at first Benson Evaporator, Activated Burner Level) / ECO Stability for possible ECO outlet steaming
- Boiler Outlet Parameters (HP/RH Temperature, Control system, Flue gas damper, Activated Burner Level, Attemperator)
- 6. APH (Water/Sulphur dew point), Flue gas pollution (ESP efficiency)
- 7. SCR (Operation temperature window)

Restricted © Siemens AG 2018

# Example of mill operation diagram (4 mills, Once- through boiler)







### **Boiler thermal calculation software DEFOS**



The thermal boiler model is constructed by using computer software **DEFOS** (boiler performance calculation tool developed under BENSON license), which permits a detailed representation of the thermodynamic and heat transfer processes across the complete boiler system based on engineering principles and analysis.

Boiler thermal model of flue gas segment:



Boiler thermal model of water/steam system:





# **Test Results at NTPC Dadri**







### 40% Technical Minimum is Possible



| Cond.     | M %  | Ash%  | C %   | H %  | N %  | S %  | 0%    |
|-----------|------|-------|-------|------|------|------|-------|
| Air dried | 4.03 | 37.29 | 43.63 | 3.26 | 1.01 | 0.35 | 10.43 |

| GCV (kcal/kg) | VM% | Ash % |
|---------------|-----|-------|
| 3000          | 22% | 35%   |

# Transient Operation (Ramp Up / Ramp Down)



increased temperature gradient results increased life consumption







# Influence on Ramps on Temperature Transient



# SPPA-P3000 Temperature Optimizer Increased steam temperatures



#### Task

To achieve maximum steam temperature without violation of material limits

#### Solution

- Robust, easy to parameterize and adaptive state space controller with observer
- Where needed, use of entire control range through to injection into saturated steam
- Use on startup/shutdown and over the entire load range
- Use of flue gas recirculation and biflux or triflux valves to control reheat steam temperature

#### Benefit, e.g. 180,000 €/a → Benefit calculation

Increased efficiency thanks to

- Higher steam temperatures
- Reduction in reheater attemperation



The Temperature Optimizer solution increases the efficiency through higher steam temperatures and the use of appropriate control elements for reheater temperature.

# Power on Demand Reduction of Wall Thickness to Improve Start Up & Cycling Capabilities



Example: Reduced Casing thickness & reduced thermal piston loading by HP bypass cooling

Significant improvement in LCF







# Reduced Startup-times: Heating blankets

# ST Warm Standby Operation to prepare for fast start-up



### **Technology**

- Electrical heating system for ST in turning gear
- Maintains rotor shaft temperature at warm startup conditions

#### **Benefit**

- Significant reduction of startup time
  - > 60 min. earlier power production
- Reduction of EOH consumption per start
- Less energy is bypassed to condenser
  - · Reduced costs per start up







Electric heating coils to keep HP/ IP Turbine casing and shaft in warm start conditions

Page 17 15.05.2020 Sandeep Chittora Services and Digital

#### **Power on Demand**

# Monitoring of flexibility consequences: steam turbine EOH counter 4.0



#### Task

- Part load may lead to steam temperature changes, especially hot reheat temperature
- Thermal stresses during operation are not considered in standard counting of equivalent operating hours (EOH counter)
- Maintenance needs may not be recognized

#### Solution

- Evaluation of operational history
- Implementation of a state of the art EOH counter considering load changes

#### **Benefits**

- More accurate EOH counting
- Improved outage planning
- Enhanced operational flexibility

### IV. Generation

EOH counting also considering load changes



#### III. Generation

EOH consumption is a function of actual thermal stress



Introduction of three start-up modes with fixed EOH consumption

#### I. Generation

Maintenance interval defined by operating hours and number of starts

# Maintenance Flexibility Fatigue Monitoring System





How much fatigue is it?

Don't Guess when you can actually measure it



# **Maintenance Flexibility Fatigue Monitoring System**





Online calculation of Boiler Fatigue Components is possible

Both Creep Fatigue and Low cycle fatigue calculated

Depending upon the actual operating mode, residual life of critical components is determined

#### Typical components:

Headers, Manifolds (HP superheater, Reheater)

**FMS** 

Boiler

Fatigue

Monitoring

System

- Piping (e.g. elbow after HP / HRH final stage attemperator)
- T-Pieces (e.g. HP bypass station)
- Y-Piece (e.g. before HP turbine)

# Part Load: Efficiency improvement

# Top heater for improved heat rate and lower NOx emisions





- a. Steam from stage bypass connection
- b. Is activated at part load
- Final feed water temperature vs. load constant or even increasing
- d. HR improvement of ~ 0.6% @ 50% load



Wai Gao Qiao 3, China 2008, 1040MW

# Increased Auxiliary Power Consumption: Centralized frequency variable power system



Solution: feed frequency variable turbine from main turbine extractions, supply frequency variable power to motors of fans and pumps.

- House power rate has been reduced from 3.5% to less than 2% (SCR and FGD included)
- Higher reliability compared to conventional electronic frequency convertors





\*) Huaibei Shenergy Power Generation Co.,Ltd

# Measures for fast load ramping Overview







- 1 Throttling
- 2 Additional valve
- 3 Condensate stop
- 4 HP heater
- 5 Fuel increase

# "Condensate throttling" controls storages in the water steam cycle to increase ramp rates





c. Fast control valves in LP extractions



NTPC Dadri Stage II – Unit #6 490 MW



Restricted © Siemens AG 2018

### **Grid Services**

# SIEMENS Ingenuity for life

# Example for grid code compliance





# **Key Takeaway**

- Lower Technical Minimum is better operation than two shift operation
- Subcritical fleet is more suitable for flexible operation with respect to loss in performance
- Lower Technical Minimum with advanced control systems is possible, unit specific changes needs to be applied
- Means of improving part load efficiency by upto 1% are available
- Maintenance planning is to be adapted based on actual life consumption during flexible operation
- Thermal power utilities will play a key role in Indian grid for renewable grid



# Further I&C solutions for flexible operation Selected references



### Frequency & Dispatch Control



Altbach, Germany
420 MW, hard coal:
5% in 30 s up to 100% load
(with turbine & condensate throttling +
partial deactivation of HP preheaters)



Dingzhou, China 600 MW, hard coal: Boiler delay reduced from 180s to 40s for load ramps up to 4%/min (with throttling)



Dadri, India
490 MW
35 MW (~7%) in 20 s
(with condensate throttling + HP reserve)

## Reliable and efficient start-ups



Franken I, Germany
383MW, gas, built 1973:
20% reduction of start-up costs

#### Reduced minimum load



Steag Voerde, Germany
700 MW, hard coal, built 1985:
Minimum sustainable load w/o oil support
and bypass reduced
from 280 (40%) to 140 MW (20 %)

#### **Increased Maximum Load**



Callide, Australia
420 MW, hard coal:
Max. load +10 %
1,400 h/year max. load through
controlled HP bypass deactivation

Restricted © Siemens AG 2018

Page 27 15.05.2020 Sandeep Chittora Services and Digital







# **Sandeep Chittora**

Head - Portfolio Consulting

Siemens Limited, India

Phone: +91 124 2842650 Mobile: +91 9971170337

E-mail: <a href="mailto:sandeep.chittora@siemens.com">sandeep.chittora@siemens.com</a>

15.05.2020