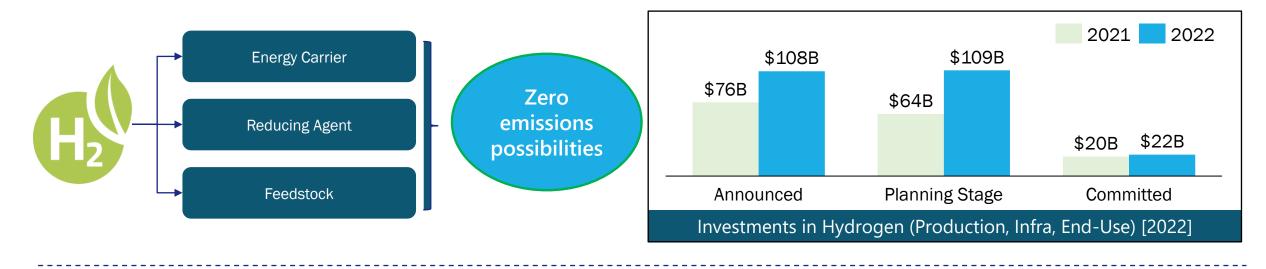


Hydrogen standards Gap analysis


Green Hydrogen Taskforce: Sub working Group 4 on Quality Infrastructure, Safety and Legal Framework

24th April **2023**

Presented by: Mr. Prashant K. Banerjee Executive Director, SIAM || Convenor, Hydrogen Sub Group III (MNRE) ed@siam.in; pkbanerjee@siam.in; www.siam.in; 011 4710 3010

HYDROGEN SUPPORTS DE-CARBONIZATION EFFORTS IN THE GLOBAL ECONOMY

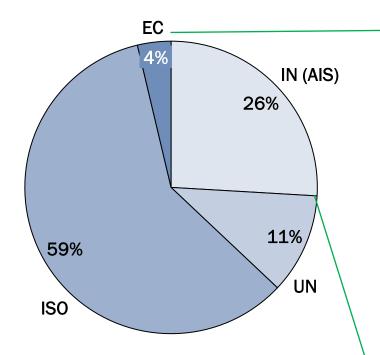
Hydrogen's Use Cases

Power	Iron & Steel	Refineries
Transport	Industry	Gas
Cement	Fertilizers	Food & Beverages

Source: IEA, Hydrogen Insights 2

GREEN H2 STANDARDS & POLICIES EMERGING ACROSS GEOGRAPHIES

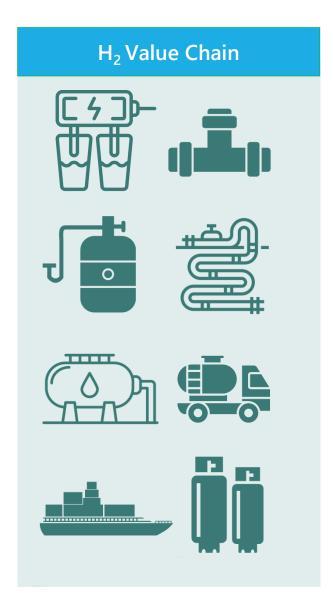
Production



Timeline					
2019	Both countries have adopted the ISO 14687:2019 repurity rating for use in fuel cell applications and 98.	. , , , , , , , , , , , , , , , , , , ,			
2020	 Germany launches National Hydrogen Strategy 14TWh of Green H₂ production will be needed by 2030 	 CERC notifies that H₂ is a potential energy store linked with RE projects 			
2023	 European Commission publishes draft rules for Green H₂ production from electrolysis Electrolysers for H₂ must be powered by new renewable electricity production "Green" H₂ criteria – GHG savings, share of RE energy needed, energy intensity needed 	 India launches National Green Hydrogen Mission National Green H₂ Mission empowers BIS to develop regulations & standards for upcoming Green H₂ capacity 			
2023-2026		 H₂ demand and capacity expansion 			
2030	• 90-110 TWh of H ₂ demand expected	 Use-case expansion across all sectors, 5MMT of GH₂ capacity expected 			
2035		 Expected that NH₄ fertilizer imports will be substituted with GH₂ derivatives 			

Rapid deployment of Green H₂ electrolyser capacity will require knowledge-sharing & partnerships between industry & govt.

INDIAN H2 STANDARDS → COMBINATION OF INDIAN & GLOBAL STANDARDS


		- 107
IN Std. Items	German standard	Differentiators
Compressed gaseous hydrogen cylinder/container	ISO TC58, ISO TC58/SC3	Indian climatic & road condition basis
Fitment of cylinder on vehicle	UN ECE GTR 180/13	Basis existing standards for CNG vehicle fleet
Construction and functional safety of battery operated vehicles	UN ECE GTR 180/20 UN ECE GTR 180/22	Indian climatic & road condition basis
Measurement of electric energy consumption	UN ECE GTR 180/21	Indian climatic condition basis
Measurement of vehicle range for electric power train vehicles	WLTP	Basis Indian road conditions and driving style
Measurement of net power and the maximum 30 minute power	UN ECE GTR 180/21	Indian climatic condition basis
Safety requirement of traction battery	UN ECE GTR 180/22	Indian road condition and driving style basis
Measurement of vehicle range for electric power train vehicles Measurement of net power and the maximum 30 minute power Safety requirement of traction	WLTP UN ECE GTR 180/21	Basis Indian road condition and driving style Indian climatic condition but Indian road condition an

Germany and India are aligned on the ISO 17268 standard for fueling and station infrastructure

Alignment with global standards will be key to fostering a dynamic H-FCEV supplier ecosystem in India and increasing market attractiveness for OEMs

GREEN H2 ADOPTION WILL REQUIRE EFFORT TO HARMONIZE STANDARDS

Global cooperation will be a key driven of safe and sustainable adoption of hydrogen technologies

Technology transfers and partnerships

ł

Cooperation on standards development

Building out capacity & sharing learned experiences

Globally acceptable and growth-supportive standards

Harmonization pathways for Indian conditions

MNRE Created Working Group on Regulations and Standards

Working Group on Regulations compliance & Standards(RCS) on Green Hydrogen

Sub Groups identified

Sub-Groups Shared the RCS Gap Analysis

Subgroup 1 Gap Analysis: 75 Standards

Manufacturing of

Electrolyser: 23 codes amd

Standards

Production on Green Hydrogen 18 codes and

Standards

Hydrogen Use in Industrial Application 34

Codes and standards

Sub-Group-I

Hydrogen production and use

Convener: CII

Members: BIS, Electrolyser Manufacturers, Green H2 producers

Sub-Group-II

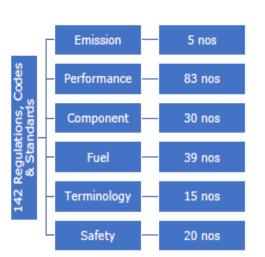
Storage and Transportation of Hydrogen

Convener: FICCI

Members: DPIIT/PESO, BIS, GAIL, Gas handling and supply industry

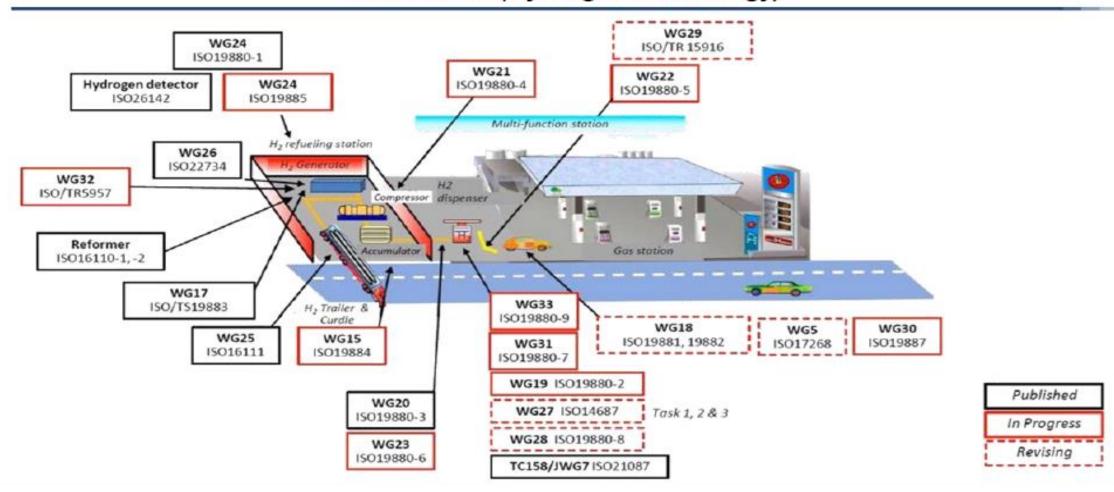
Subgroup 2

Over 150 standards have been identified during the course of action for Gap Analysis

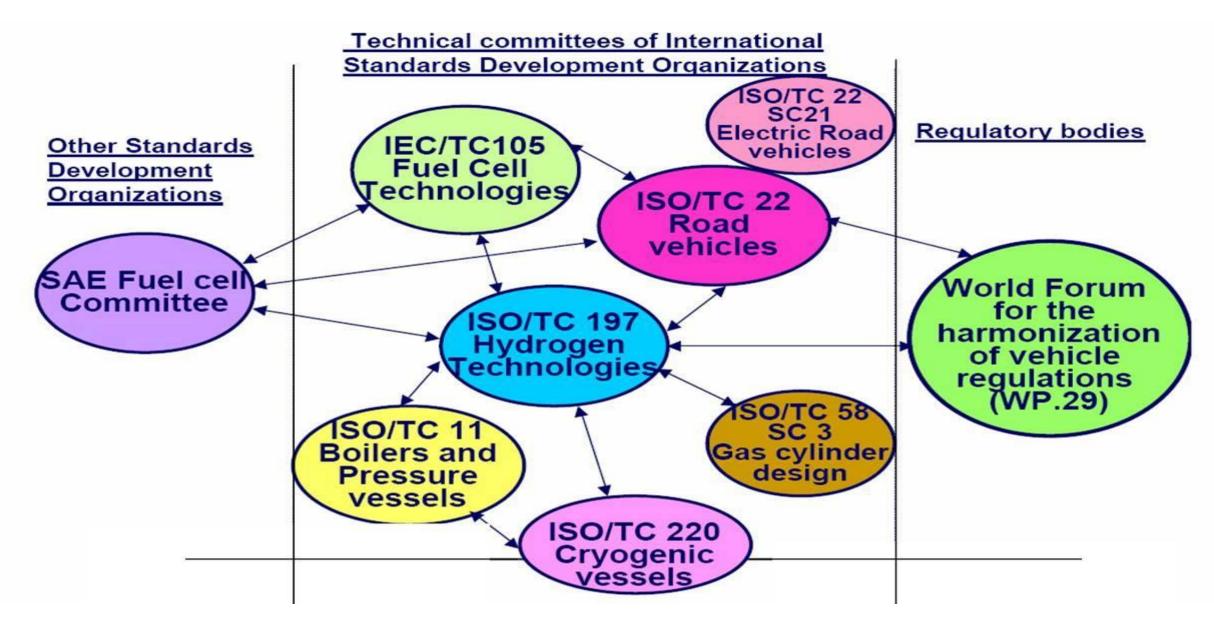

Sub-Group-III

Hydrogen-fuelled mobility applications

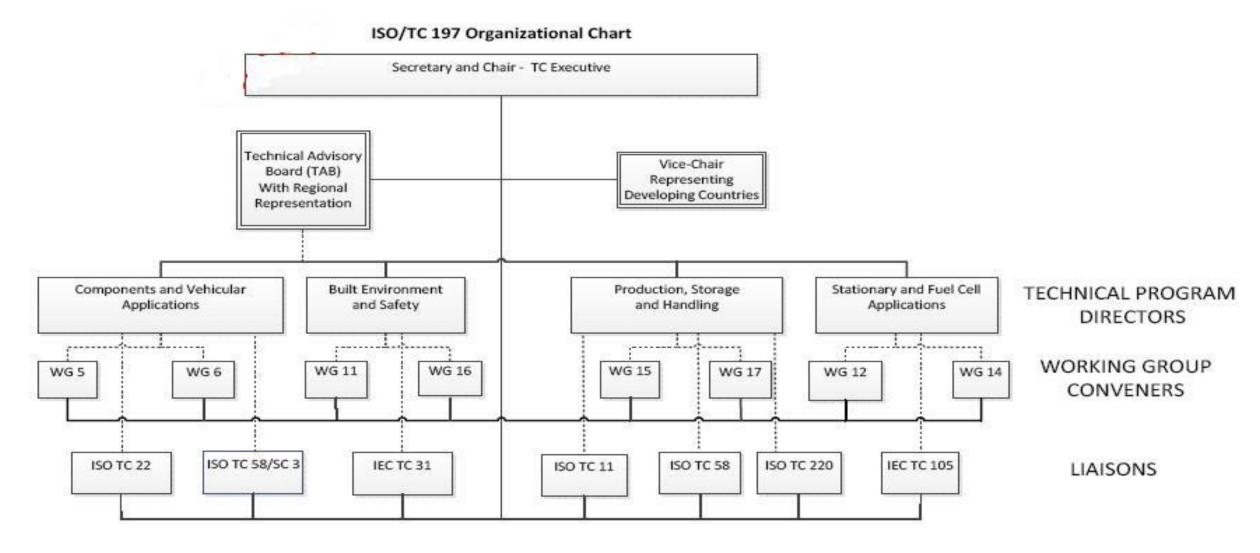
Convener: SIAM


Members: MoRTH, ARAI, BIS, IOCL, NTPC, Automobile Industry

Subgroup 3 Gap Analysis: 150 RCS Analysis done (142 Automobiles + 8 Locomotive)



ISO / TC 197 (Hydrogen Technology)


INTERNATIONAL STANDARDS TECHNICAL COMMITTEES ON HYDROGEN

ISO 197 HYDROGEN STANDARDS COMMITTEE STRUCTURE

Standards for Hydrogen Fuel, Components, Cylinders and Vehicles

S

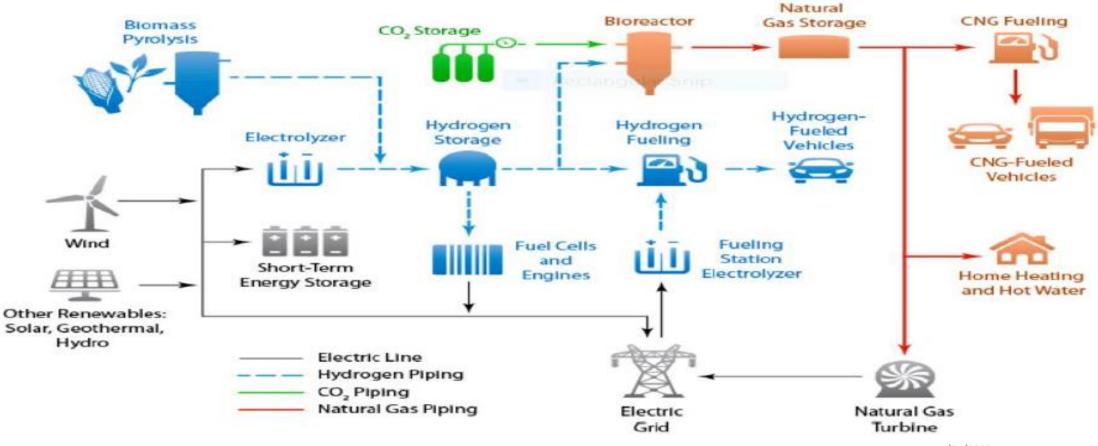
u

b

g

0

u


p

Regulations, Codes & Standards (RCS) for Largescale Hydrogen Systems (Production & Use)

Hydrogen production through renewable energy / green forms

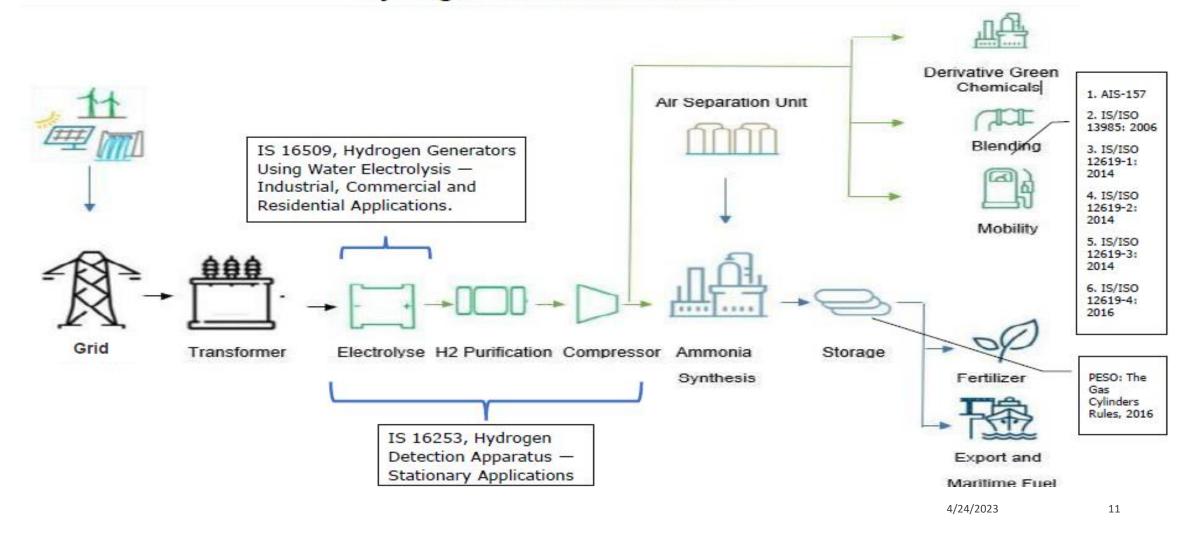
S

u

b

g

0


u

p

Regulations associated with various areas of Hydrogen Generation and Use

CII: STANDARD GAP ANALYSIS SUMMARY

Summary of the Study

Manufacturing of Electrolyser

S

u

b

g

0

u

- 1 existing Code: IS 16509-2020 (ISO 22734-2019)
- 22 Recommendations made

<u>Production on Green Hydrogen</u>

- 2 existing Code: IS 16509-2020 (ISO 22734-2019) and NFPA 2 (on safety)
- 16 Recommendations made

Hydrogen Use in Industrial Application

- 12 existing Codes and Standards identified
- 22 Recommendations made

CII: STANDARD GAP ANALYSIS RECOMMENDATIONS

S

u

b

g

0

u

p

Priority Recommendations

	Thomy Recommendations									
Sl.no	Key interventions		Indian Standard		International Standard		Gap	Recommendation	Reasoning	
			Name	No.	Name	No.				
1)	AWE H2 Purity	After 99.8 separation % unit After Deoxo 99.95 unit % After Dryer 99.99 unit 9%		IS 1090:2002	Hydrogen fuel quality	ISO 14687- 2:2019	The Chinese (GB) and ISO standards have a more detailed classification of applications and grade of purity	Both AWE and PEM can achieve ultra-high pure hydrogen purity. Purity of hydrogen should be defined as per the application.	The level of purity is application and material specific. Achieving higher purity of hydrogen is expensive and energy intensive	
1)	AWE System Efficiency	58-60% (complete system including: electrical system, Electrolyser stack, Separation unit, Deoxygenation, dryer and chiller) based on LHV	No standard available		No standard available		may vary based on the purity and pressure output of hydrogen. Efficiency of electrolyser stack must also be a parameter	Widely 3 methods of efficiency calculation are used namely, 1) Lower heating value 2) Higher Heating Value 3) Voltage efficiency A suitable method should be finalized for uniformity	To help ease of comparison and maintain uniformity	
1)	AWE H2 Pressure	Max 16 barg	Hydrogen Generators Using Water Electrolysis — Industrial, Commercial And Residential Applications		Hydrogen Generators Using Water Electrolysis — Industrial, Commercial And Residential Applications	ISO 22734 : 2019	Both the Indian IS 16509: 2020 and International ISO 22734: 2019 standards have given the definitions of MAWP (Maximum allowable working pressure) and MOP (Maximum operating pressure) and testing procedures but haven't mentioned a value	Values may be mentioned for the use of electrolysers in specific applications keeping in mind safety and technical requirements	This will help in setting a benchmark	

CII: STANDARD GAP ANALYSIS RECOMMENDATIONS

S

u

b

g

0

u

p

Priority Recommendations

5	.No	Key interventions		Indian Standard		International Standard		Gap	Recommendation	Reasoning
				Name	No.	Name	No.			
1)	PEM H2 Purity	Refer 1							
1)	PEM System Efficiency	Refer 2							
1)		PEM H2 Pressure	Maximum pressure of 40 barg	Hydrogen Generators Using Water Electrolysis — Industrial, Commercial And Residential Applications	IS 16509 : 2020	Hydrogen Generators Using Water Electrolysis — Industrial, Commercial And Residential Applications	ISO 22734 : 2019	Both the Indian IS 16509 : 2020 and International ISO 22734 : 2019 standards have given the definitions of MAWP (Maximum allowable working pressure) and MOP (Maximum operating pressure) and testing procedures but haven't mentioned a value.	Values may be mentioned for the use of electrolysers in specific applications keeping in mind safety and technical requirements	This will help in setting a benchmark

FICCI: STANDARD GAP ANALYSIS & RECOMMENDATIONS

Gap Analysis (Type-wise) and Recommendations

3 Types of categories identified for the gap analysis.

Type 1

S

u

b

g

0

u

p

Analysis of International standards that are missing in the Indian norms.

And mapping done to ensure the adoption of relevant standards in the Indian system.

Type 2

Standards available in both Indian as well as international standards.

The gaps were then identified to understand further scope for improvement.

Type 3

National and International codes not available or Partially available.

Henceforth, this analysis includes extracting out recommendations (experience based)

Summary

FICCI(Convenor of Subgroup-II) consolidated comprehensive inputs for the framework on RCS to enable work for **storage and transportation for green hydrogen** within the country:

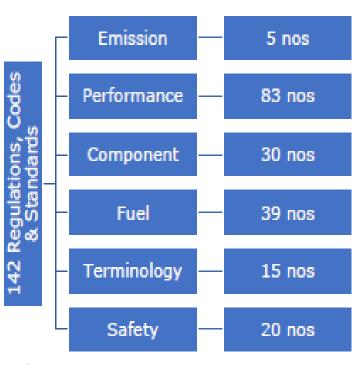
- More than 150 R, C, S mapped against respective topics
- Recommendations to adopt International C&S ~ 60 nos.
- Recommendations related to update of existing R, C, S and / or new C&S \sim 22 nos.

u

- Fuel Cell Vehicles including components, sub-components: Framework for system design/testing, vehicle safety, performance, terminology, hydrogen sensors and fuel system.
- Fuel Cell: Design considerations on thermal management, performance, and recyclability.
- IC Engine vehicles fuelled by pure Hydrogen and Hydrogen-blended fuels
- Refuelling Infrastructure, process, and equipment
- Hydrogen/Hydrogen derivative fuelled marine propulsion systems
- Hydrogen/Hydrogen derivative locomotive for rail transportation.
- Hydrogen/Hydrogen derivative gensets application.
- Hydrogen/Hydrogen derivative construction equipment vehicles application.
- Testing infrastructure readiness.
- Fuel quality and specifications
- Emission norms

3

Milestone I: 150 relevant RCS identified & covered


Milestone II: Gap Analysis carried out

- At product, system & component levels with priority
- To facilitate unhindered development of applications
- Keeping safety as paramount criteria, feasibility of design, development, testing, validation & certification ensured
- Identified amendments required in the existing RCS
- For all new RCS, a short scope prepared

Milestone III: Drafting of Standards, Amendments & Recommendations carried out

- New standard drafted for hydrogen powered L category vehicles
- Amendments being recommended in AIS 157 Safety regulation for H2 FC vehicles (M&N Category)
- New standard drafted AIS 195 for hydrogen powered ICE vehicles(M & N Category)

150 RCS Analysis done (142 Automobiles + 8 Locomotive)

SUB-GROUP RECOMMENDATIONS || REPORTS

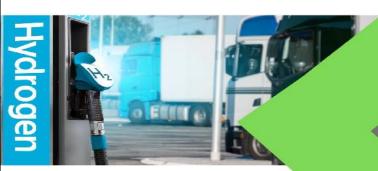
Confederation of Indian Industry

Subgroup – I Hydrogen Production & Use

Date: 16 March 2023

CII- Subgroup 1

Report of Subgroup 2: Storage and Transportation of Hydrogen


Working Group on "Regulations and Standards under National Green Hydrogen Mission" Version 1: 15th Mar.'2023

> Submitted to: Ministry of New and Renewable Energy

> > FICCI- Subgroup 2

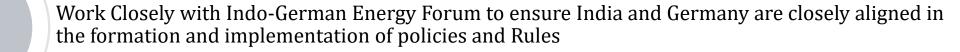
REPORT ON STANDARDS & REGULATORY FRAMEWORK

Hydrogen Fuelled Mobility Applications

Submitted by

PRASHANT K BANERJEE

Convenor, Subgroup III


Hydrogen Fuelled Mobility Applications

under National Green Hydrogen Mission

SIAM-Subgroup 3

NEXT ACTION PLAN- INDO GERMAN ENERGY FORUM

Next Action Plan Participate Actively in International Organization for Standardization

Technical Committee 197 (ISO/TC 197)

- i. WG1: Hydrogen Production
- i. WG2: Hydrogen Storage
- iii. WG3: Hydrogen Systems and Infrastructure
- iv. WG4: Fuel Cells and Other Hydrogen Utilization Devices
- v. WG5: Safety and Environmental Aspects of Hydrogen Technologies

International Electrotechnical Commission (IEC)

- -Technical Committee 105 (TC105) Fuel cell technologies:
- -Technical Committee 108 (TC108) safety of electronic equipment in Hydrogen Tech

Active participation in UNECE Working Party on Pollution and Energy (GRPE) Subgroup on Hydrogen Fuel Cell Vehicle Task Force

SYNCHRONIZING OUR STRENGTHS & OBJECTIVES | INDIA-GERMANY

INDIA National Green Hydrogen Mission INDIA

The overarching objective of the Mission is to make India the Global Hub for **production**, **usage and**

Export of Green Hydrogen

and its derivatives.

Infrastructure Development

Mutual Recognition of Safety Standards

Unified Market Development

Creation of FTA and inflow of Foreign Direct Investment (FDI)

Creation of Single Portal for Indo-German Hydrogen Standards

GERMANY

Objectives of **GERMANY**'s National Hydrogen Strategy

To wean Away from
Fossils with Renewable
Energies and Green
Hydrogen

Develop a home market for Imports Establish international markets and cooperation for hydrogen to bring down the cost globally

Develop a "home market" with focus on hard to abate sectors ready for imports **EU ENERGY MINISTER (Feb. 2022)**

"End dependence on Russia"

In view of the Ukraine conflict, EU energy ministers decided to reduce the dependence on Russia's energy supplies and the associated security of supply.

Gazprom (14.06.2022)

Deutscher Wasserstoff- und Brennstoffzellen-Verband: Der DWV

Reduction of gas delivery about 40%.

USA (14.06.2022)

Explosion in LNG-Terminal – less export to Germany

Renewable Energies and GREEN HYDROGEN is the best answer to the energy dictate.

THANKS

Presented by: Mr. Prashant K Banerjee Executive Director, SIAM || Convenor, Hydrogen Sub Group III (MNRE) ed@siam.in; pkbanerjee@siam.in; www.siam.in; 011 4710 3010