

Best Practices in Green Hydrogen Standards & Regulations **Development:**

EU Case Study and Mapping to India

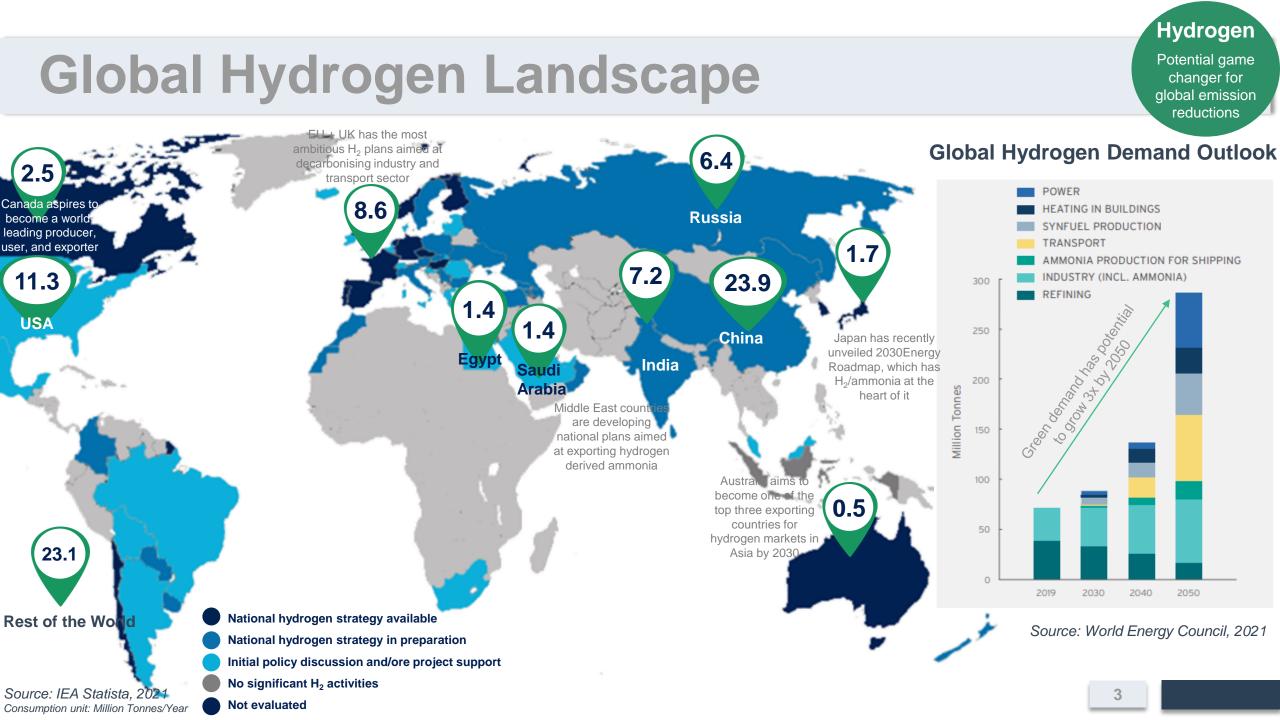
Prepared by

Supported by

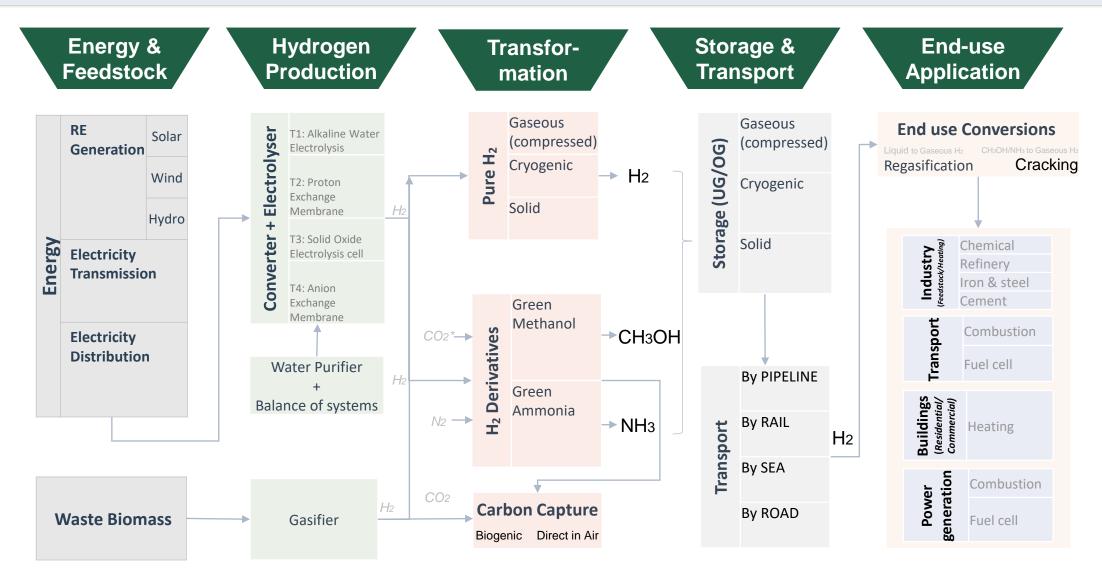
Growing Green Hydrogen Ecosystem

OVERAGE

Introduction

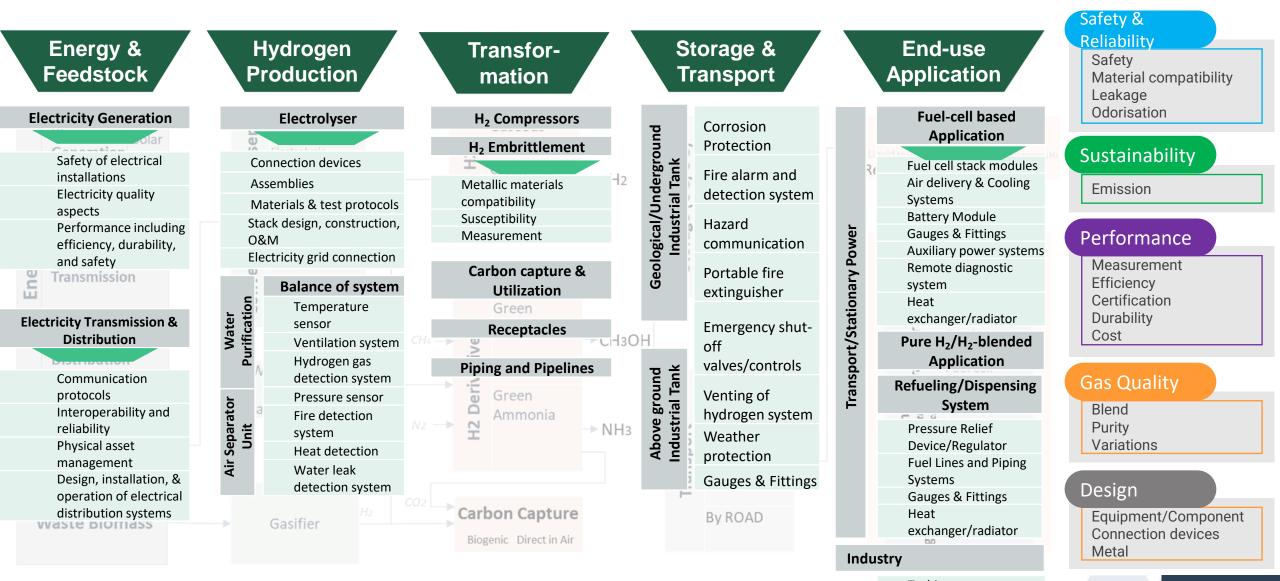

- Global Hydrogen Landscape
- India Green Hydrogen Value Chain
- Areas for Green Hydrogen Standards (across value chain)

EU Case study


- EU evolving Strategy on Green Hydrogen
- H₂ Regulations: RED II to RED III
- Evolving (Green) H2 Standards
- H₂ Certifications
- Key Take aways for India

India Mapping

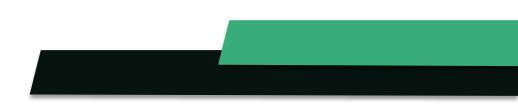
- Mapping Existing International and Indian Standards
- Green Hydrogen standards importance for India



India Green Hydrogen Value Chain

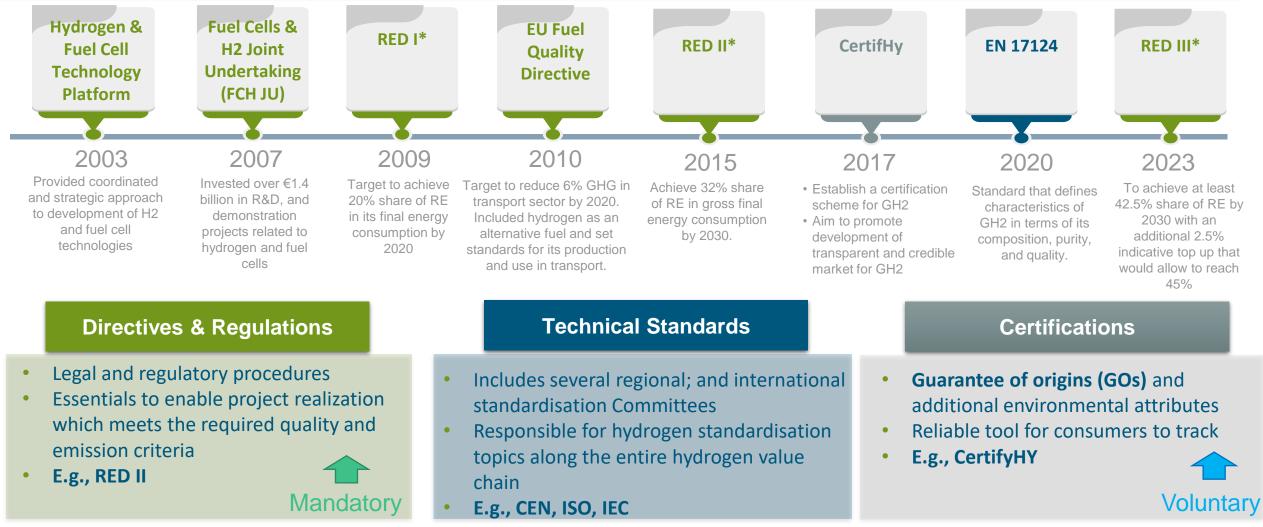
Source: Prepared by pManifold, IITM, & RHDHV * Either directly captured or through sustainable biomass route

Areas for Green Hydrogen Standards (across value chain)


Turbine Product Handling

5

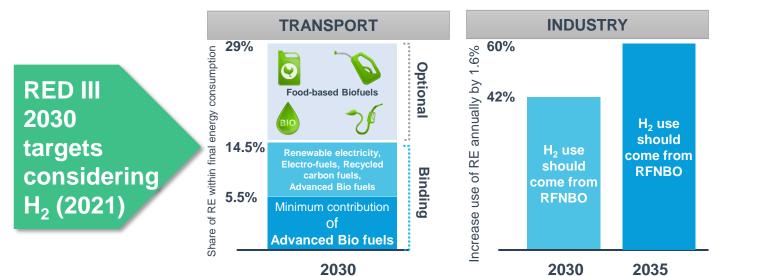
European Union Case study


Green Hydrogen Regulations, Standards and Certifications

EU evolving Strategy on Green Hydrogen

Right Mix of Directives/ Regulations, Tech. Standards, and Certifications

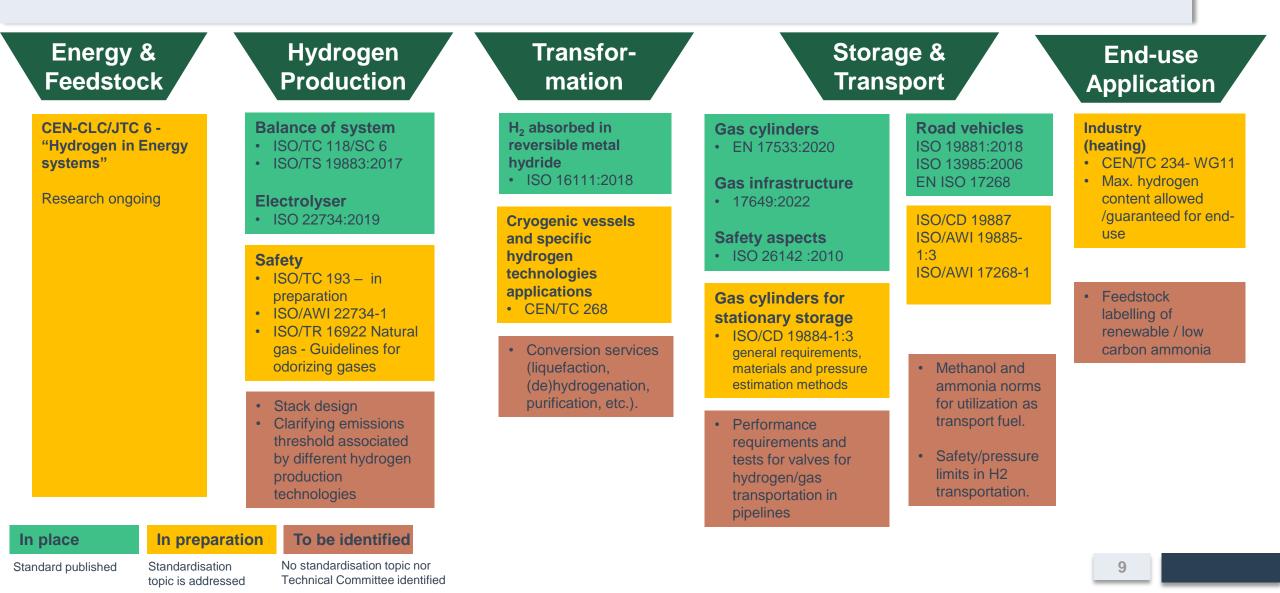
* Guarantee of Origin (GO) is closely related to RED and is a mechanism to track and verify the origin and quantity of renewable energy produced in EU. It is used by energy suppliers and consumers throughout the EU to track and verify the origin of renewable energy.


H2 Regulations: RED II to RED III

RED II Delegated Acts on H2 (2015)

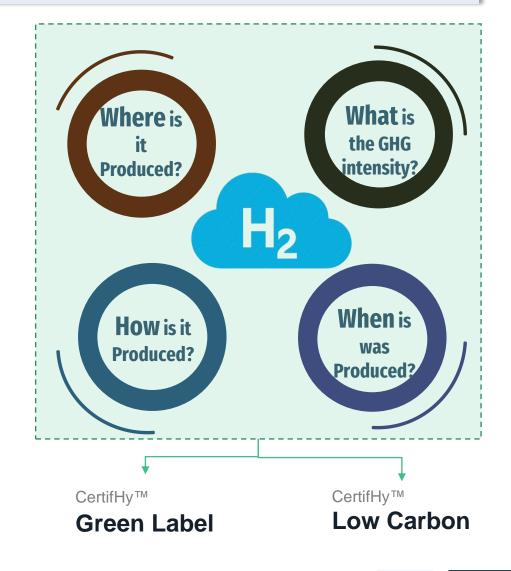
By 2021, Achieve **70%** reduction in GHG emissions compared to applicable benchmark for fossil equivalents **DA Article 27** sets out detailed requirements for sourcing renewable electricity (EUinternal and outside) to be used in the production of Renewable Fuels of Non-Biologic Origin (RFNBO), including renewable H_2 :

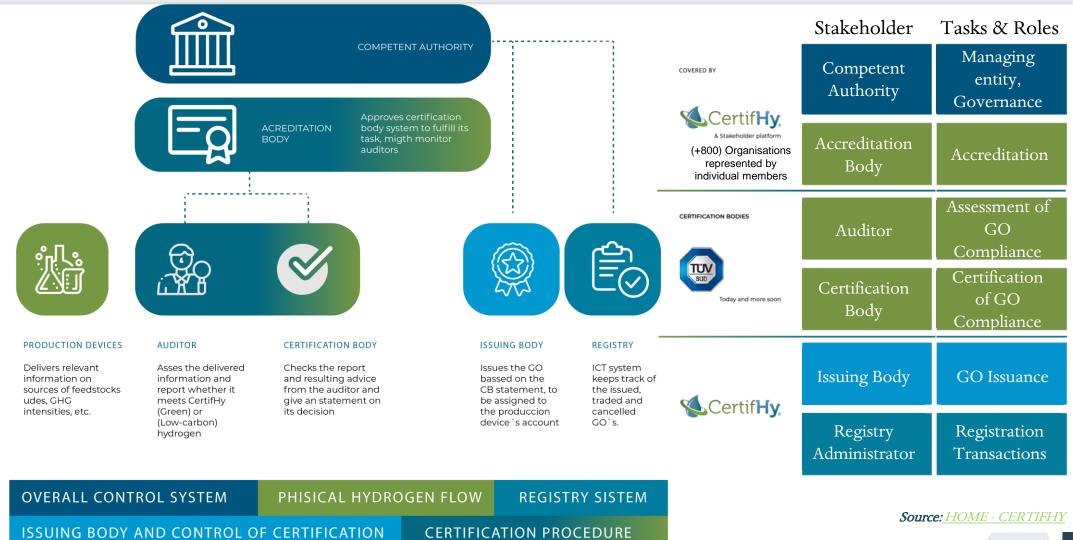
- ✓ **Renewability**: Are produced using fully renewable energy (no biomass or nuclear energy)
- ✓ Additionality
- ✓ Temporal correlation
- ✓ Geographical correlation


2021/0218(COD) - 14/09/2022 - Renewable Energy Directive (europa.eu)

RFNBO: Renewable Fuel of Non-biological Origin **RED**: Renewable Energy Directive

Source: <u>https://www.consilium.europa.eu/en/press/press-releases/2023/03/30/council-and-parliament-reach-provisional-deal-on-renewable-energy-directive/</u>


Evolving (Green) H2 Standards


Existing Green Hydrogen Certification in Europe

CertifHy[™] is currently developing an EU Voluntary Scheme for the certification of hydrogen as RFNBO according to the European Renewable Energy Directive.*

Implementation Mechanism for CertifHy

Key Takeaways for India

REGULATIONS

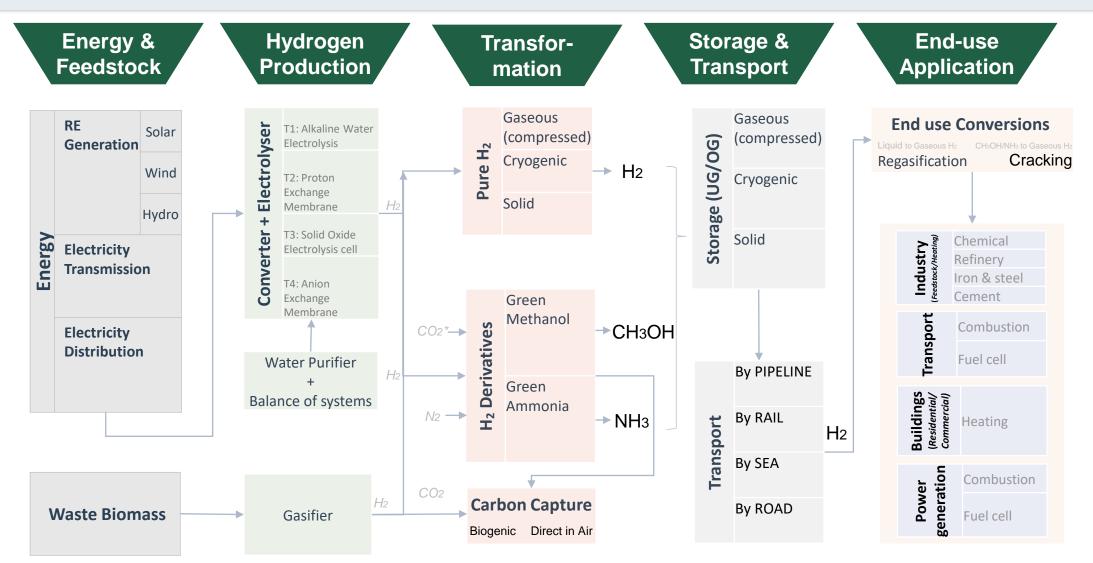
- India's GH2 export potential (equipments, services, GH2) to the EU will depend on **complying with the EU's rules on renewable hydrogen production**
- Transport and industry targets of the RED II-revision in the EU will drive the demand for GH2 in the region, and India could benefit from this if it can **produce and export renewable hydrogen that meets EU's standards**
- Clear and consistent **regulatory framework** is necessary to drive growth of GH2 market, including incentives and support schemes for GH2 production, research and development, and infrastructure deployment

STANDARDS

- Standardization of **electricity grid connections**, **Power to X technologies**, and gas quality aspects is crucial for GH2 production. Existing standards for the design and use of H2 blends also need to be updated
- Standards for vehicle on-board H2 storage and safe integration, as well as H2 propulsion systems and refueling infrastructure/processes, are necessary for the transport sector
- **Safety** is a top priority, and sensing technologies need to provide reliable and comparable results when measuring and metering hydrogen's chemical and physical properties

CERTIFICATIONS

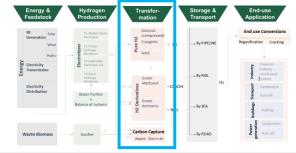
- Reliable and efficient Guarantees of Origin (GOs) system is essential for the development of renewable and low carbon H2 market
- CertifHy GH2 is H2 originating from renewable sources and having GHG balance below a defined threshold. It
 is pending EU Voluntary Scheme for the certification of hydrogen as RFNBO compliant with REDII and REDIII
 Delegated Acts requirements


India Mapping

Progress on Green Hydrogen Standards Development

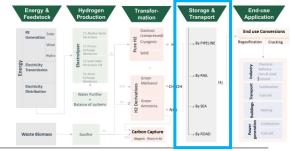
Mapping Existing International and Indian Standards

Source: Prepared by pManifold, IITM, & RHDHV

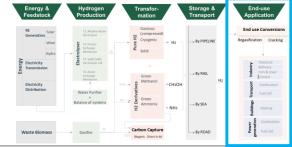

* Either directly captured or through sustainable biomass route

Energy & FeedStock Hydrogen (Production) Transformation Storage & Transport End-use Application Resentation (under hydrogen) 12 dates ware (compressed (compressed) Image: compressed (compressed) <

Hydrogen Production


Sub Elements L1	Sub Elements L2	International Standards/ Guidelines	Country	Indian standards	Description
Electrolysers	H ₂ Generator	ISO 22734:2019	International	-	H_2 generators that use a variety of feedstocks, including natural gas, biogas, and methanol.
	H ₂ Generators: Design, Manufacturing, Testing, and Commissioning	ISO 22734: 2019	International	IS 16509: 2020	H_2 generators using water electrolysis – industrial, commercial, and residential applications
	H ₂ fuel cell generators: System Efficiency, Durability, Safety	ISO 16110-1:2007	International	IS 16512-1:2007	H ₂ generators using fuel processing technologies
	Metrology: Efficiency	JRC 2021	EU		Harmonized protocols for testing of low temperature water electrolysers
	Steam Reformer	CGA H-10	US	-	Combustion safety for steam reformer operation
H ₂ Production Plants	Piping	ASME B 31.12	US	-	H ₂ Industrial piping
	Plant Operations	EIGA Doc 122/04	EU	-	Environmental impact of H ₂ plant
	Small: Gaseous (<1,000 Nm³/h)	EIGA Doc 155/09/E	EU	-	Best available techniques for H ₂ production by SMR
	Large: Gaseous (>10,000 Nm ³ /h)	EIGA Doc 220	EU	-	Best available techniques for H ₂ production by SMR
Balance of Plants	Component/ Equipment	ISO/TC 118/SC 6	International	-	Systems for hydrogen drying, separation, compression and purification; product and functional standards for the components and operation of these systems

Hydrogen Transformation


Sub Elements L1	Sub Elements L2	International Standards/ Guidelines	Country	Indian standards	Description
H ₂ Production Plants	Compressed and Cryogenic Liquid H ₂ Generation	NFPA 2	US	-	H ₂ technologies code
H ₂ Blending	Natural Gas/Biomethane: Gas Infrastructure	EN 16726 (EN 16723- 1)	EU	-	$\rm H_2$ as blend with natural gas/biomethane (esp. Wobbe Index, Oxygen and total sulfur content, $\rm H_2$ and relative density)
		CEN/CLC JTC 6, ISO/TC 197, CEN/TC 234	EU	-	H ₂ quality in industry
	Converted/ Rededicated Gas Systems, Fuel	CEN/TS XXX (WI 00234096)	EU	-	Standards for H_2 purity and gas quality handling, including blending
Fuel	PEM FC applications	EN 17124	EU	-	Methodologies for analysis and measurement of impurities in H_2 , norms for quality of hydrogen to all utilization's way (including directing H_2 to NG pipelines)
H₂ Blending: Natural Gas	Metrology	EN ISO 6145	EU	-	Preparation of calibration gas mixtures using dynamic volumetric methods
	Receptacles	EN ISO 10715	EU	-	Natural Gas Sampling Guidelines
H ₂ Blending: Infrastructure	Receptacles: Stationary	ISO 26142 : 2010	International	IS 16253 : 2016	Leaks, damage, or corrosion

Hydrogen Storage & Transport

Sub Elements L1	Sub Elements L2	International Standards/ Guidelines	Country	Indian standards	Description
Storage	Gas Cylinders	EN ISO 11114-4	International	-	Material testing standards
	Gas Cylinders	ISO/TC 58	International	-	Compatibility of cylinder and valve materials with gas contents – metallic, non-metallic, plastic liners,
	Gas Cylinders	EN 17339	EU	-	Fully wrapped carbon composite cylinders and tubes for hydrogen
	Gas Cylinders	EN 17533	EU	IS 8198 : 2004	Cylinders and tubes for stationary storage of gaseous hydrogen
	Liquid H ₂	EIGA Doc 06/19	EU	-	Safety in storage, handling and distribution of liquid ${\rm H_2}$
	Tanks	ASME STP/PT-005	US	-	Design factor guidelines for high-Pressure composite $\rm H_2$ tanks
	Tanks	CGA H-3	US	IS 5931 : 1970	Standard for cryogenic H ₂ storage
	Gas	NFPA 55	US	-	Compressed Gases and Cryogenic Fluids Code
Transport	Pipes	ISO 3183	International	-	Steel pipe for pipeline transportation systems
	Storage	ISO 16111: 2018	International	-	Transportable gas storage devices- H ₂ absorbed in metal hydride
	Gas Cylinders	CEN/TC 23	EU	IS 11114 : 2017	Transportable Gas Cylinders
	Pipelines and Caves	CEN/TC 234	EU	-	Gas infrastructure
	Pipes	EN 1555	EU	-	Pipes/material - plastic pipes
Transport & Storage	Gas Infrastructure	CEN/TC 69	EU	IS 16749 : 2018	Industrial valves
	Receptacles: Stationary	EN 437	EU		Gas families and test gases for H ₂

Hydrogen End-use Application

Sub Elements L1	Sub Elements L2	International Standards/ Guidelines	Country	Indian standards	Description
Industry	Heat	EN 16726	EU	-	Max. hydrogen content allowed /guaranteed for end-use,
	Heat	EN 16726	EU	-	Wobbe index, oxygen
	Heat	EN 437	EU	-	Appliance testing - missing test gases
	Heat	CEN/TC 234 - WG11	EU	-	Purity of hydrogen/ impurities like inert gases/Wobbe index from repurposed infrastructure
	Heat	ISO 14687:2019	International	-	Purity of volatile blends max 30 %
	Heat	EN 16726	EU	-	Gas fired central heating boilers
	Heat	CEN/TC 237, ISO/TC 30	EU	IS 23828 : 2013	Gas metering devices metrology - measurement
Transport	Fuel Cell	CEN/TC 268	EU	-	Hydrogen fuel - product specification and quality assurance - proton exchange membrane (PEM) fuel cell applications for road vehicles
	Fuelling stations, installation - Refueling	EN 17127	EU	IS/ISO 13985 : 2006	Slow fuelling stations – need fueling protocol and requirements,
	installation - Refuelling	CEN/TC 268	EU	IS17268 : 2020	Gaseous hydrogen land vehicle refuelling connection devices, outdoor hydrogen refuelling points dispensing gaseous hydrogen and incorporating filling protocols

Green Hydrogen Standards Importance for India

India has potential to become a major exporter of GH_2 due to abundance of RE resources. Local manufacturers can supply necessary equipment and technologies for GH_2 production, such as electrolysers, etc.

International standard landscape for GH_2 is still evolving, and there is an opportunity to play a leading role in shaping these standards

India can work collaboratively with other countries and organizations *(leveraging its G20 Presidency)* to develop common standards and certifications for GH_2 , which can help facilitate trade and promote adoption of GH_2 on global scale

Countries with focus on R&D and component manufacture are observed to be leaders. India should focus on it's GH₂ R&D

Value chain specific investment channelisation

India has potential to direct standards on solar capture for electrolysis application

Pivotal to direct R&D to the most challenging part of the value chain: Storage & Distribution

Thank you