

Agri-voltaic system

Experiences with water harvesting systems

6th Indo-German Energy Conference 2019 18th Sept. 2019 | 2 PM – 6 PM India Expo Center, Greater Noida Shamrock Hall, 2nd Floor

Session II: AgroPhotovoltaics – Harvesting the Sun for Power and Food

Priyabrata Santra

Principal Scientist, ICAR-Central Arid Zone Research Institute, Jodhpur

Design criteria of agri-voltaic system

$$\cos\theta_s = \sin\varphi \sin\delta + \cos\varphi \cos\delta \cosh$$

$$\cos \phi_{s} = \frac{\sin \delta \, \cos \varphi - \cos \delta \, \sin \varphi \, \cos h}{\cos \theta_{s}}$$

$$\delta = 23.45 \sin(B)$$

$$B = \frac{360}{365}(d - 81)$$

$$h = 15(LST - 12)$$

$$LST = LT + \frac{TC}{60}$$

$$TC = 4(Longitude - LSTM) + EoT$$

LSTM =
$$15 \Delta GMT$$

$$EoT = 9.87 \sin 2B - 7.53 \cos B - 1.5 \sin B$$

SPV layout design (105 kW) Place: ICAR-CAZRI, Jodhpur

- Field size = $68 \text{ m} \times 68 \text{ m}$
- Block size = $28 \text{ m} \times 28 \text{ m}$
- PV module capacity = $200 W_p$ each
- Total capacity = 105 kW
- The system needs to be grid tied
- Distance from field to available transformer: ~750-1000 m

Block-3

Total PV length (28 m \times 2)

Block 3

PV module installation design

Inclination of the PV module = 26° (latitude of Jodhpur)

Interspace area and below panel area is used for crop cultivation Interspace area = $\frac{49\%}{20}$ of the total installation area Below panel area = $\frac{24\%}{20}$ of the total installation area

Performance of crops in agri-voltaic system at Jodhpur

<u>Kharif crops</u>: Growth and yield of *Vigna radiata* was not affected by the shade of PV module, whereas rest two are affected

<u>Rabi crops:</u> Growth and yield of *Plantago ovata* and <u>Cuminum cyminum</u> are significantly affected by shade of PV module

<u>Medicinal crops:</u> Performance of medicinal crops were superior in the interspace area than over control

<u>Vegetable crops:</u> Growth and yield of Solanum melongena was significantly affected by shade of PV module

Rainwater harvesting in agri-voltaic system

module

irrigation

Field photographs of rainwater harvesting system

Field photographs of agri-voltaic system at ICAR-CAZRI, Jodhpur

Field photographs of agri-voltaic system at ICAR-CAZRI, Jodhpur

Field photographs of agri-voltaic system at ICAR-CAZRI, Jodhpur

Economics and Land Equivalent Ratio

Sr. No.	Item	Value
1.	Area	1 ha
2.	Capacity	500 kW _p
3.	Life cycle	25 years
4.	Capital investment	Rs 2,25,00,000/-
5.	Replacement cost for inverter	Rs 30,00,000/-
6.	Mainteance cost @0.5%	Rs 1,12,500/-
7.	Annual generation (@4 kWh/day/kWp)	7,30,000 kWh
8.	Electricity sale price	Rs 4.00/-
9.	Cash inflow per year (Electricity)	Rs 23,28,700/-
10.	Cash inflow per year (Crop)	Rs 80,000/-
11.	Simple payback period	6.65 years
12.	Discounted payback period	12.94 years
13.	Internal rate of return	13%
14.	Net present value at a discount rate of 10%	Rs 60,02,815

$$LER = \frac{Electricity \ generation_{Agri-voltaics}}{Electricity \ generation_{Sole}} + \frac{Crop \ yield_{Agri-voltaics}}{Crop \ yield_{Sole}}$$

LER value of 1.41 can be achieve

Green energy generation

Agri-voltaic system in Farmer's field-Proposed for KUSUM scheme

Benefits of Agri-voltaic system

- Increased income from farm land
- Recycling of harvested rainwater for cleaning PV modules and irrigating crops (1.5 lakh litre per acre and can provide 40 mm irrigation in 1 acre land)
- Improvement in microclimate for crop cultivation and optimum PV generation
- Reduction in soil erosion by wind
- Reduction in dust load on PV panel
- Improvement in land equivalent ratio (LER ~1.41)
- Soil moisture conservation by reducing the wind speed on ground surface
- Reduction in GHG emission (598.6 tons of CO₂ savings/year/ha)

Few perceived drawbacks

- Safety of field workers engaged in agricultural activity
- Managerial complexity: additional load on plant manager for agricultural activity
- Ownership issue: Farmer and solar power plant functionary
- Sharing of benefits in case of joint venture
- High capital investment during initial establishment

Pressure-discharge relationship of solar PV pump

1 HP PV Pump

Pressure-discharge At different solar irradition

Irrigation intensity under solar PV Pumping system

Module for solar PV pump based irrigation from harvested rainwater in farm pond

Solar PV pump and farm pond

Performance of mini-sprinklers operated by 1 HPAC pump

Performance of micro-sprinklers operated by 1 HP

