

CAZRI Agrivoltaic system

Dr. Priyabrata Santra

Principal Scientist ICAR-Central Arid Zone Research Institute, Jodhpur

6th Best Practices Study Tour and International Workshop on Agri PV plants, RE Grid Integration and Green Hydrogen Organised by CBIP, New Delhi Date: 17th March, 2023 Venue: Hotel Fairfield by Marriott, Jodhpur

Why Agrivoltaic system?

CAZRI Agrivoltaic system

Three designs

Single row model Double row model Triple row model

Crops in CAZRI Agrivoltaic system

<u>Kharif crops</u>: Growth and yield of Vigna radiata was not affected by the shade of PV module, whereas rest two are affected

<u>*Rabi* crops:</u> Growth and yield of *Plantago ovata* and *Cuminum cyminum* are significantly affected by shade of PV module

<u>Medicinal crops:</u> Performance of medicinal crops were superior in the interspace area than over control

<u>Vegetable crops:</u> Growth and yield of Solanum melongena was significantly affected by shade of PV module

Rainwater harvesting in CAZRI Agrivoltaic system

Daily light integral in Agrivoltaic system

DLI is integral of photosynthetic photon flux density (PPFD) or photosynthetically active radiation (PAR) for a day

Agrivoltaic system: Option to achieve LDN targets in drylands

(PV generation+agriculture+rainwater harvesting)

PV array design (double row)

Agrivoltaic system has the potential to improve all three global indicators of LDN

- Increases the surface cover
- Expected to improves SOC status
- Increases NPP of the land

Economics of agrivoltaic system (double row model)

Sr. No.	Item	Value
1.	Area	1 ha
2.	Capacity (Double row model)	400 kW _p
3.	Life cycle	25 years
4.	Cash outflow for ground mounted PV system (Rs 42,000/kWp)	Rs 1,68,00,000/-
5.	Cash outflow for replacement cost of inverter (once in life cycle) (Rs 6/Watt of inverter)	Rs 30,00,000/-
6.	Cash outflow for repair and maintenance cost @0.1% of initial investment	Rs 16,800/-
7.	Cash outflow for crop cultivation (Moong bean during kharif and isabgol during rabi) (Rs/ha/y)	Rs 52,450/-
8.	Annual generation (@4 kWh/day/kWp with 1% decrease per year)	5,84,000 kWh
9.	Electricity sale price (Rs/kWh)	Rs 5.00/-
10.	Cash inflow from PV component (Rs/ha/y)	Rs 29,20,000/-
11.	Cash inflow from crop component (Moong bean and isabgool) (Rs/ha/y)	Rs 80,349/-
12.	Simple payback period	5.87 years
13.	Discounted payback period	10.40 years
14.	Internal rate of return	16%
15.	Net present value at a discount rate of 10%	Rs 70,15,128

Green energy generation: Agrivoltaic system

Double row agrivoltaic model (Bottom row-full density; Top row-60% PV density)

Reduction in Carbon footprint 479 ton CO₂e ha⁻¹ y⁻¹

Maping agrivoltaic potential in India

Criteria Map-1: Global Horizontal Irradiance

Weight = 0.5

GHI	Score			
2	2			
4-4.5	4			
4.5-5.0	6			
5.0-5.5	8			
>5.5	10			

Criteria Map-2: Land Use/Land Cover

Criteria Map-3: Annual Rainfall

Weight = 0.2

Rainfall (mm)	Score
< 500	2
500 - 1000	4
1000 - 1500	6
1500 - 2000	8
> 2000	10

Criteria Map-4: Depth of groundwater table

Weight = 0.1

Groundwater depth bgl (m)	Score			
<7	10			
7-14	8			
14-21	6			
21-28	4			
>28	2			

Potential areas of agrivoltaic system

Priority	Area (Sq. Km)
Very Low	200342
Low	1084960
Moderate	1516780
	271700
High	2/1/08

Potential areas of agrivoltaic system-AER wise

Agro-ecological Regions	Very Low	Low	Moderate	High	Grand Total (Million Hac.)
1. Western Himalayas (Cold Arid)	5.48	3.58	3.67	1.25	13.98
2. Western Plain, Kachchh, and part of Kathiwara Peninsula	0.05	10.93	10.17	8.50	29.65
3. Deccan Plateau	-	0.07	4.32	0.42	4.81
4. Northern Plain and Central Highlands including Aravallis	0.03	21.15	7.96	1.95	31.08
5. Central Malwa Highlands, Gujarat Plains, and Kathiawar Peninsula	-	0.85	14.49	1.28	16.63
6. Deccan Plateau, hot semi-arid ecoregion	-	0.65	28.38	0.73	29.76
7. Deccan (Telengana) Plateau and Eastern Ghats	-	0.16	15.18	0.79	16.14
8. Eastern Ghats, Tamil Nadu Plateau and Deccan (Karnataka)	0.03	0.74	14.33	3.13	18.22
9. Northern Plain, hot sub-humid (dry) ecoregion		11.46	0.07	0.09	11.62
10. Central Highlands (Malwas, Budelkhand, and Eastern Satpura)	-	2.82	18.42	1.09	22.32
11. Eastern Plateau (Chattisgarh), hot sub-humid ecoregion		6.90	6.31	0.63	13.84
12. Eastern (Chotanagpur) Plateau and Eastern Ghats	-	14.06	11.41	1.06	26.53
13. Eastern Plain	-	6.65	2.69	0.13	9.47
14. Western Himalayas (Warm Sub-humid to humid)	6.16	9.41	1.06	0.38	17.02
15. Bengal and Assam plains	0.60	8.94	1.45	0.10	11.09
16.Eastern Himalayas	6.29	0.89	0.05	0.01	7.24
17. North Eastern Hills (Purvanchal)	1.25	6.00	2.73	0.00	9.98
18. Eastern Coastal Plain	-	1.34	4.69	0.49	6.52
19. Western Ghats and Coastal Plain	0.11	1.47	3.98	5.06	10.61
20. Island of Andaman Nicobar and Lakshadweep	-	0.12	-	-	0.12
Grand Total (Million Hac.)	19.98	108.18	151.37	27.09	306.63

Benefits and drawbacks of Agrivoltaic system

Benefits of Agri-voltaic system

- Increased income from farm land
- Recycling of harvested rainwater for cleaning PV modules and irrigating crops (1.5 lakh litre per acre and can provide 40 mm irrigation in 1 acre land)
- Improvement in microclimate for crop cultivation and optimum PV generation
- Reduction in soil erosion by wind
- Reduction in dust load on PV panel
- Improvement in land equivalent ratio (LER ~1.41)
- Soil moisture conservation by reducing the wind speed on ground surface
- Reduction in GHG emission (598.6 tons of CO₂ savings/year/ha)

Few perceived drawbacks

- Safety of field workers engaged in agricultural activity
- Managerial complexity: additional load on plant manager for agricultural activity
- Ownership issue: Farmer and solar power plant functionary
- Sharing of benefits in case of joint venture
- High capital investment during initial establishment

Agrivoltaic system in Farmer's field-KUSUM scheme (option)

Future of agrivoltaics in India

Farmers with large hand holding/ Farmers' cooperative/ FPOs

Private PV power plant etc

Possible Convergence of Govt policies

- National mission of Sustainable Agriculture (NMSA)
- Pradhan Mantri Krishi Sinchai Yojana (PMKSY)
- Kisan Urja Suraksha Utthan evam Mahaabhiyann (KUSUM)
- National Solar Mission (NSM)
- National Initiative on Climate Resilient Agriculture (NICRA)
- Doubling farmers' income
- Sustainable development goals (SDGs)-Land degradation neutrality (LDN)

